A Closed-Form Bayesian Inferences for Multinomial Randomized Response Model
                    
                        
                            نویسندگان
                            
                            
                        
                        
                    
                    
                    چکیده
منابع مشابه
A Closed-Form Bayesian Inferences for Multinomial Randomized Response Model
In this paper, we examine the problem of estimating the sensitive characteristics and behaviors in a multinomial randomized response model using Bayesian approach. We derived a posterior distribution for parameter of interest for multinomial randomized response model. Based on the posterior distribution, we also calculated a credible intervals and mean squared error (MSE). We finally compare th...
متن کاملA Bayesian Mixed Logit-Probit Model for Multinomial Choice
In this paper we introduce a new flexible mixed model for multinomial discrete choice where the key individualand alternative-specific parameters of interest are allowed to follow an assumptionfree nonparametric density specification while other alternative-specific coefficients are assumed to be drawn from a multivariate normal distribution which eliminates the independence of irrelevant alter...
متن کاملBayesian Inference in the Multinomial Logit Model
The multinomial logit model (MNL) possesses a latent variable representation in terms of random variables following a multivariate logistic distribution. Based on multivariate finite mixture approximations of the multivariate logistic distribution, various data-augmented Metropolis-Hastings algorithms are developed for a Bayesian inference of the MNL model. Zusammenfassung: Das multinomiale log...
متن کاملMultinomial Bayesian model of Early Visual Cortex
Using a multi-layer multinomial Bayesian network, we study the interplay between Bayesian inference and natural image learning in relation to receptive field properties of early visual cortex. Keywords—Bayesian inference, natural image learning
متن کاملBayesian Test of Significance for Conditional Independence: The Multinomial Model
Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2007
ISSN: 2287-7843
DOI: 10.5351/ckss.2007.14.1.121